Feeds:
Bài viết
Phản hồi

Posts Tagged ‘điện tử’

1 – Mạch tạo dao động

1.1 – Khái niệm về mạch dao động.

Mạch dao động được ứng dụng rất nhiều trong các thiết
bị điện tử, như mạch dao động nội trong khối RF Radio, trong bộ kênh Ti
vi mầu, Mạch dao động tạo xung dòng , xung mành trong Ti vi , tạo
sóng hình sin cho IC Vi xử lý hoạt động v v…

  • Mạch dao động hình Sin
  • Mạch dao động đa hài
  • Mạch dao động nghẹt
  • Mạch dao động dùng IC

1.2 – Mạch dao động hình Sin
Người ta có thể tạo dao động hình Sin từ các linh kiện L – C hoặc từ thạch anh.

* Mạch dao động hình Sin dùng L – C

Mạch dao động hình Sin dùng L – C

  • Mach dao động trên có tụ C1 // L1 tạo thành mạch dao
    động L -C Để duy trì sự dao động này thì tín hiệu dao động được đưa vào
    chân B của Transistor, R1 là trở định thiên cho Transistor, R2 là trở
    gánh để lấy ra tín hiệu dao động ra , cuộn dây đấu từ chân
    E Transistor xuống mass có tác dụng lấy hồi tiếp để duy trì dao
    động. Tần số dao động của mạch phụ thuộc vào C1 và L1 theo công thức

f = 1 / 2.p.( L1.C1 )1/2

* Mạch dao động hình sin dùng thạch anh.

Mạch tạo dao động bằng thạch anh .

  • X1 : là thạch anh tạo dao động , tần số dao động được
    ghi trên thân của thach anh, khi thạch anh được cấp điện thì nó
    tự dao động ra sóng hình sin.thạch anh thường có tần số dao động từ vài
    trăm KHz đến vài chục MHz.

  • Đèn Q1 khuyếch đại tín hiệu dao động từ thạch anh và cuối cùng tín hiệu được lấy ra ở chân C.

  • R1 vừa là điện trở cấp nguồn cho thạch anh vừa định thiên cho đèn Q1

  • R2 là trở ghánh tạo ra sụt áp để lấy ra tín hiệu .

Thạch anh dao động trong Tivi mầu, máy tính

1.3 – Mạch dao động đa hài.

Mạch dao động đa hài tạo xung vuông

* Bạn có thể tự lắp sơ đồ trên với các thông số như sau :

  • R1 = R4 = 1 KW

  • R2 = R3 = 100KW

  • C1 = C2 = 10µF/16V

  • Q1 = Q2 = đèn C828

  • Hai đèn Led

  • Nguồn Vcc là 6V DC

  • Tổng giá thành lịnh kiện hết khoảng 4.000 VNĐ

* Giải thích nguyên lý hoạt động : Khi
cấp nguồn , giả sử đèn Q1 dẫn trước, áp Uc đèn Q1 giảm => thông qua
C1 làm áp Ub đèn Q2 giảm => Q2 tắt => áp Uc đèn Q2 tăng =>
thông qua C2 làm áp Ub đèn Q1 tăng => xác lập trạng thái Q1 dẫn bão
hoà và Q2 tắt , sau khoảng thời gian t , dòng nạp qua R3 vào tụ C1 khi
điện áp này > 0,6V thì đèn Q2 dẫn => áp Uc đèn Q2 giảm => tiếp
tục như vậy cho đến khi Q2 dẫn bão hoà và Q1 tắt, trạng thái lặp đi lặp
lại và tạo thành dao động, chu kỳ dao động phụ thuộc vào C1, C2 và R2,
R3.

2 – Thiết kế mạch dao động bằng IC

IC tạo dao động XX555 ; XX có thể là TA hoặc LA v v …

Mạch dao động tạo xung bằng IC 555

  • Bạn hãy mua một IC họ 555 và tự lắp cho mình một mạch tạo dao động theo sơ đồ nguyên lý như trên.

  • Vcc cung cấp cho IC có thể sử dụng từ 4,5V đến 15V , đường mạch mầu đỏ là dương nguồn, mạch mầu đen dưới cùng là âm nguồn.

  • Tụ 103 (10nF) từ chân 5 xuống mass là cố định và bạn có thể bỏ qua ( không lắp cũng được )

  • Khi thay đổi các điện trở R1, R2 và giá trị tụ C1 bạn
    sẽ thu được dao động có tần số và độ rộng xung theo ý muốn theo công
    thức.

T = 0.7 × (R1 + 2R2) × C1f = 1.4
(R1 + 2R2) × C1

T = Thời gian của một chu kỳ toàn phần tính bằng (s)
f = Tần số dao động tính bằng (Hz)
R1 = Điện trở tính bằng ohm (W )
R2 = Điện trở tính bằng ohm ( W )
C1 = Tụ điện tính bằng Fara ( W )

T = Tm + Ts
T : chu kỳ toàn phần
Tm = 0,7 x ( R1 + R2 ) x C1 Tm : thời gian điện mức cao
Ts = 0,7 x R2 x C1
Ts : thời gian điện mức thấp

Chu kỳ toàn phần T bao gồm thời gian có điện
mức cao Tm và thời gian có điện mức thấp Ts

  • Từ các công thức trên ta có thể tạo ra một dao động xung vuông có độ rộng Tm và Ts bất kỳ.

  • Sau khi đã tạo ra xung có Tm và Ts ta có T = Tm + Ts và f = 1/ T

* Thí dụ bạn thiết kế mạch tạo xung như hình dưới đây.

Mạch tạo xung có Tm = 0,1s , Ts = 1s

Bài tập : Lắp mạch dao động trên với các thông số :

  • C1 = 10µF = 10 x 10-6 = 10-5 F

  • R1 = R2 = 100KW = 100 x 103 W

  • Tính Ts và Tm = ? Tính tần số f = ?

Bài làm :

  • Ta có Ts = 0,7 x R2 x C1 = 0,7 x 100.103 x 10-5 = 0,7 s
    Tm = 0,7 x ( R1 + R2 ) x C1 =
    = 0,7 x 200.103 x 105 = 1,4 s

  • => T = Tm + Ts = 1,4s + 0,7s = 2,1s

  • => f =1 / T = 1/2,1 ~ 0,5 Hz

3 – Mạch dao động nghẹt

Mạch dao động nghẹt ( Blocking OSC )

Mạh dao động nghẹt có nguyên tắc hoạt động khá đơn giản, mạch
được sử dụng rộng rãi trong các bộ nguồn xung ( switching ), mạch có
cấu tạo như sau :

Mạch dao động nghẹt

Mạch dao động nghẹt bao gồm :

  • Biến áp : Gồm cuộn sơ cấp 1-2 và cuộn hồi tiếp 3-4, cuộn thứ cấp 5-6

  • Transistor Q tham gia dao động và đóng vai trò là đèn công xuất ngắt mở tạo ra dòng điện biến thiên qua cuộn sơ cấp.

  • Trở định thiên R1 ( là điện trở mồi )

  • R2, C2 là điện trở và tụ điện hồi tiếp

Có hai kiểu mắc hồi tiếp là
hồi tiếp dương và hồi tiếp âm, ta xét cấu tạo và nguyên tắc hoạt động
của từng mạch.

* Mạch dao động nghẹt hồi tiếp âm .

  • Mạch hồi tiếp âm có cuộn hồi tiếp 3-4 quấn ngược chiều với cuộn sơ cấp 1-2 , và điện trở mồi R1 có trị số nhỏ khoảng 100KW , mạch thường được sử dụng trong các bộ nguồn công xuất nhỏ khoảng 20W trở xuống

  • Nguyên tắc hoạt động : Khi cấp nguồn, dòng định
    thiên qua R1 kích cho đèn Q1 dẫn khá mạnh, dòng qua cuộn sơ cấp 1-2
    tăng nhanh tạo ra từ trường biến thiên => cảm ứng sang cuộn hồi
    tiếp, chiều âm của cuộn hồi tiếp được đưa về chân B đèn Q thông qua R2,
    C2 làm điện áp chân B đèn Q giảm < 0V => đèn Q lập tức
    chuyển sang trạng thái ngắt, sau khoảng thời gian t dòng điện qua R1
    nạp vào tụ C2 làm áp chân B đèn Q tăng => đèn Q dẫn lặp lại chu kỳ
    thứ hai => tạo thành dao động .

  • Mạch dao động nghẹt hồi tiếp âm có ưu điểm là dao động
    nhanh, nhưng có nhược điểm dễ bị xốc điện làm hỏng đèn Q do đó mạch
    thường không sử dụng trong các bộ nguồn công xuất lớn.

* Mạch dao động nghẹt hồi tiếp dương .

  • Mạch dao động nghẹt hồi tiếp dương có cuộn hồi tiếp 3-4 quấn thuận chiều với cuộn sơ cấp 1-2, điện trở mồi R1 có trị số lớn khoảng 470KW

  • Vì R1 có trị số lớn, lên dòng định thiên qua R1
    ban đầu nhỏ => đèn Q dẫn tăng dần => sinh ra từ trường biến thiên
    cảm ứng lên cuộn hồi tiếp => điện áp hồi tiếp lấy chiều dương hồi
    tiếp qua R2, C2 làm đèn Q dẫn tăng => và tiếp tục cho đến khi
    đèn Q dẫn bão hoà, Khi đèn Q dẫn bão hoà, dòng điện qua cuộn 1-2 không
    đổi => mất điện áp hồi tiếp => áp chân B đèn Q giảm nhanh và đèn
    Q lập tức chuyển sang trạng thái ngắt, chu kỳ thứ hai lặp lại như trạng
    thái ban đầu và tạo thành dao động.

  • Mạch này có ưu điểm là rất an toàn dao động từ từ không
    bị xốc điện, và được sử dụng trong các mạch nguồn công xuất lớn
    như nguồn Ti vi mầu.

* Xem lại lý thuyế về cảm ứng điện từ :

Thí nghiệm về hiện tượng cảm ứng điện từ trong biến áp.

Ở thí nghiệm trên ta thấy rằng
, bóng đèn chỉ loé sáng trong thời điểm công tắc đóng hoặc ngắt , nghĩa
là khi dòng điện chạy qua cuộn sơ cấp biến đổi, trong trường hợp có
dòng điện chạy qua cuộn sơ cấp nhưng không đổi cũng không tạo ra điện áp cảm trên cuộn thứ cấp

Nguồn: hocnghe.com.vn

Read Full Post »

1 – Mạch chỉnh lưu điện xoay chiều

1.1 – Bộ nguồn trong các mạch điện tử .

Trong các mạch điện tử của các thiết bị như
Radio -Cassette, Âmlpy, Ti vi mầu, Đầu VCD v v… chúng sử dụng
nguồn một chiều DC ở các mức điện áp khác nhau, nhưng ở ngoài zắc cắm
của các thiết bị này lại cắm trực tiếp vào nguồn điện AC 220V 50Hz ,
như vậy các thiết bị điện tử cần có một bộ phận để chuyển đổi từ nguồn
xoay chiều ra điện áp một chiều , cung cấp cho các mạch trên, bộ phận
chuyển đổi bao gồm :

  • Biến áp nguồn : Hạ thế từ 220V xuống các điện áp thấp hơn như 6V, 9V, 12V, 24V v v …
  • Mạch chỉnh lưu : Đổi điện AC thành DC.
  • Mạch lọc Lọc gợn xoay chiều sau chỉnh lưu cho nguồn DC phẳng hơn.
  • Mạch ổn áp : Giữ một điện áp cố định cung cấp cho tải tiêu thụ

Sơ đồ tổng quát của mạch cấp nguồn.

1.2 – Mạch chỉnh lưu bán chu kỳ .

Mạch chỉnh lưu bán chu kỳ sử dụng
một Diode mắc nối tiếp với tải tiêu thụ, ở chu kỳ dương =>
Diode được phân cực thuận do đó có dòng điện đi qua diode và đi qua
tải, ở chu kỳ âm , Diode bị phân cực ngược do đó không có dòng qua tải.

Dạng điện áp đầu ra của mạch chỉnh lưu bán chu kỳ.

1.3 Mạch chỉnh lưu cả chu kỳ

Mạch chỉnh lưu cả chu kỳ
thường dùng 4 Diode mắc theo hình cầu (còn gọi là mạch chỉnh lưu cầu)
như hình dưới.

Mạch chỉnh lưu cả chu kỳ .

  • Ở chu kỳ dương ( đầu dây phía trên dương, phía dưới âm)
    dòng điện đi qua diode D1 => qua Rtải => qua diode D4 về đầu dây
    âm

  • Ở chu kỳ âm, điện áp trên cuộn thứ cấp đảo chiều ( đầu
    dây ở trên âm, ở dưới dương) dòng điện đi qua D2 => qua Rtải =>
    qua D3 về đầu dây âm.

  • Như vậy cả hai chu kỳ đều có dòng điện chạy qua tải.

2 – Mạch lọc và mạch chỉnh lưu bội áp

2.1 – Mạch lọc dùng tụ điện.

Sau khi chỉnh lưu ta thu được điện áp một chiều nhấp
nhô, nếu không có tụ lọc thì điện áp nhấp nhô này chưa thể dùng được
vào các mạch điện tử , do đó trong các mạch nguồn, ta phải lắp thêm các
tụ lọc có trị số từ vài trăm µF đến vài ngàn µF vào sau cầu Diode
chỉnh lưu.

Dạng điện áp DC của mạch chỉnh lưu
trong hai trường hợp có tụ và không có tụ

  • Sơ đồ trên minh hoạ các trường hợp mạch nguồn có tụ lọc và không có tụ lọc.

  • Khi công tắc K mở, mạch chỉnh lưu không có tụ lọc tham gia , vì vậy điện áp thu được có dạng nhấp nhô.

  • Khi công tắc K đóng, mạch chỉnh lưu có tụ C1 tham gia
    lọc nguồn , kết quả là điện áp đầu ra được lọc tương đối phẳng, nếu tụ
    C1 có điện dung càng lớn thì điện áp ở đầu ra càng bằng phẳng, tụ C1
    trong các bộ nguồn thường có trị số khoảng vài ngàn µF .

Minh hoạ : Điện dụng của tụ lọc càng lớn
thì điện áp đầu ra càng bằng phẳng.

  • Trong các mạch chỉnh lưu, nếu có tụ lọc mà không có tải
    hoặc tải tiêu thụ một công xuất không đáng kể so với công xuất của biến
    áp thì điện áp DC thu được là DC = 1,4.AC

2.2 – Mạch chỉnh lưu nhân 2 .

Sơ đồ mạch nguồn chỉnh lưu nhân 2

  • Để trở thành mạch chỉnh lưu nhân 2 ta phải dùng
    hai tụ hoá cùng trị số mắc nối tiếp, sau đó đấu 1 đầu của điện áp xoau
    chiều vào điểm giữa hai tụ => ta sẽ thu được điện áp tăng gấp
    2 lần.

  • Ở mạch trên, khi công tắc K mở, mạch trở về dạng chỉnh lưu thông thường .

  • Khi công tắc K đóng, mạch trở thành mạch chỉnh lưu nhân 2, và kết quả là ta thu được điện áp ra tăng gấp 2 lần.

3 – Mạch ổn áp cố định

3.1 – Mạch ổn áp cố định dùng Diode Zener.

.

Mạch ổn áp tạo áp 33V cố định cung cấp
cho mạch dò kênh trong Ti vi mầu

  • Từ nguồn 110V không cố định thông qua điện trở hạn dòng R1 và gim
    trên Dz 33V để lấy ra một điện áp cố định cung cấp cho mạch dò
    kệnh
  • Khi thiết kế một mạch ổn áp như trên ta cần tính toán điện
    trở hạn dòng sao cho dòng điện ngược cực đại qua Dz phải nhỏ hơn dòng
    mà Dz chịu được, dòng cực đại qua Dz là khi dòng qua R2 = 0
  • Như sơ đồ trên thì dòng cực đại qua Dz bằng sụt áp trên R1 chia cho giá trị R1 , gọi dòng điện này là I1 ta có

I1 = (110 – 33 ) / 7500 = 77 / 7500 ~ 10mA

Thông thường ta nên để dòng ngược qua Dz ≤ 25 mA

3.2 – Mạch ổn áp cố định dùng Transistor, IC ổn áp .

Mạch ổn áp dùng Diode Zener như trên có ưu
điểm là đơn giản nhưng nhược điểm là cho dòng điện nhỏ ( ≤ 20mA ) . Để
có thể tạo ra một điện áp cố định nhưng cho dòng điện mạnh hơn nhiều
lần người ta mắc thêm Transistor để khuyếch đại về dòng như sơ đồ dưới
đây.

Mạch ổn áp có Transistor khuyếch đại

  • Ở mạch trên điện áp tại điểm A có thể thay đổi và còn
    gợn xoay chiều nhưng điện áp tại điểm B không thay đổi và tương
    đối phẳng.

  • Nguyên lý ổn áp : Thông qua điện trở R1 và Dz gim
    cố định điện áp chân B của Transistor Q1, giả sử khi điện áp chân
    E đèn Q1 giảm => khi đó điện áp UBE tăng => dòng qua đèn Q1 tăng => làm điện áp chân E của đèn tăng , và ngược lại …

  • Mạch ổn áp trên đơn giản và hiệu quả nên được sử dụng
    rất rộng dãi và người ta đã sản xuất các loại IC họ LA78.. để thay thế
    cho mạch ổn áp trên, IC LA78.. có sơ đồ mạch như phần mạch có mầu xanh
    của sơ đồ trên.

IC ổn áp họ
LA78..
IC ổn áp LA7805

  • LA7805 IC ổn áp 5V

  • LA7808 IC ổn áp 8V

  • LA7809 IC ổn áp 9V

  • LA7812 IC ổn áp 12V

Lưu ý :
Họ IC78.. chỉ cho dòng tiêu thụ khoảng 1A trở xuống, khi ráp IC trong
mạch thì U in > Uout từ 3 đến 5V khi đó IC mới phát huy tác
dụng.

3.3 – Ứng dụng của IC ổn áp họ 78..

IC ổn áp họ 78.. được dùng rộng rãi trong các bộ
nguồn , như Bộ nguồn của đầu VCD, trong Ti vi mầu, trong máy tính v
v…

Ứng dụng của IC ổn áp LA7805 và
LA7808 trong bộ nguồn đầu VCD

4 – Mạch ổn áp tuyến tính (có hồi tiếp)

4.1 – Sơ đồ khối của mạch ổn áp có hồi tiếp .

Sơ đồ khối của mạch ổn áp có hồi tiếp .

* Một số đặc điểm của mạch ổn áp có hồi tiếp :

  • Cung cấp điện áp một chiều ở đầu ra không đổi trong hai
    trường hợp điện áp đầu vào thay đổi hoặc dòng tiêu thụ của tải thay đổi
    , tuy nhiên sự thay đổi này phải có giới hạn.

  • Cho điện áp một chiều đầu ra có chất lượng cao, giảm thiểu được hiện tượng gợn xoay chiều.

* Nguyên tắc hoạt động của mạch.

  • Mạch lấy mẫu sẽ theo dõi điện áp đầu ra thông qua một cầu phân áp tạo ra ( Ulm : áp lấy mẫu)

  • Mạch tạo áp chuẩn => gim lấy một mức điện áp cố định (Uc : áp chuẩn )

  • Mạch so sánh sẽ so sánh hai điện áp lấy mẫu Ulm và áp chuẩn Uc để tạo thành điện áp điều khiển.

  • Mạch khuếch đại sửa sai sẽ khuếch đại áp điều khiển,
    sau đó đưa về điều chỉnh sự hoạt động của đèn công xuất theo hướng
    ngược lại, nếu điện áp ra tăng => thông qua mạch hồi tiếp điều chỉnh
    => đèn công xuất dẫn giảm =>điện áp ra giảm xuống . Ngược lại nếu
    điện áp ra giảm => thông qua mạch hồi tiếp điều chỉnh => đèn công
    xuất lại dẫn tăng => và điện áp ra tăng lên =>>
    kết quả điện áp đầu ra không thay đổi.

4.2 – Phân tích hoạt động của mạch nguồn có hồi tiếp trong Ti vi đen trắng Samsung

Điện áp đầu vào còn gợn xoay chiều Điện áp đầu ra bằng phẳng

Mạch ổn áp tuyến tính trong Ti vi Samsung đen trắng .

* Ý nghĩa các linh kiện trên sơ đồ.

  • Tụ 2200µF là tụ lọc nguồn chính, lọc điện áp sau chỉnh
    lưu 18V , đây cũng là điện áp đầu vào của mạch ổn áp, điện áp này có
    thể tăng giảm khoảng 15%.

  • Q1 là đèn công xuất nguồn cung cấp dòng điện chính cho
    tải , điện áp đầu ra của mạc ổn áp lấy từ chân C đèn Q1 và có giá trị
    12V cố định .

  • R1 là trở phân dòng có công xuất lớn ghánh bớt một phần dòng điện đi qua đèn công xuất.

  • Cầu phân áp R5, VR1 và R6 tạo ra áp lấy mẫu đưa vào chân B đèn Q2 .

  • Diode zener Dz và R4 tạo một điện áp chuẩn cố định so với điện áp ra.

  • Q2 là đèn so sánh và khuyếch đại điện áp sai lệch => đưa về điều khiển sự hoạt động của đèn công xuất Q1.

  • R3 liên lạc giữa Q1 và Q2, R2 phân áp cho Q1

* Nguyên lý hoạt động .

  • Điện áp đầu ra sẽ có xu hướng thay đổi khi Điện áp đầu vào thay đổi, hoặc dòng tiêu thụ thay đổi.

  • Giả sử : Khi điện áp vào tăng => điện áp ra
    tăng => điện áp chân E đèn Q2 tăng nhiều hơn chân B ( do có Dz gim
    từ chân E đèn Q2 lên Ura, còn Ulm chỉ lấy một phần Ura ) do đó UBE
    giảm => đèn Q2 dẫn giảm => đèn Q1 dẫn giảm => điện áp ra giảm
    xuống. Tương tự khi Uvào giảm, thông qua mạch điều chỉnh => ta lại
    thu được Ura tăng. Thời gian điều chỉnh của vòng hồi tiếp rất
    nhanh khoảng vài µ giây và được các tụ lọc đầu ra loại bỏ, không làm
    ảnh hưởng đến chất lượng của điện áp một chiều => kết quả là điện áp
    đầu ra tương đối phẳng.

  • Khi điều chỉnh biến trở VR1 , điện áp lấy mẫu thay đổi,
    độ dẫn đèn Q2 thay đổi , độ dẫn đèn Q1 thay đổi => kết quả là điện
    áp ra thay đổi, VR1 dùng để điều chỉnh điẹn áp ra theo ý muốn .

4.3 – Mạch nguồn Ti vi nội địa nhật.

Sơ đồ mạch nguồn ổn áp tuyến tính
trong Ti vi mầu nội địa Nhật .

  • C1 là tụ lọc nguồn chính sau cầu Diode chỉnh lưu.

  • C2 là tụ lọc đầu ra của mạch nguồn tuyến tính.

  • Cầu phân áp R4, VR1, R5 tạo ra điện áp lấy mẫu ULM

  • R2 và Dz tạo ra áp chuẩn Uc

  • R3 liên lạc giữa Q3 và Q2, R1 định thiên cho đèn công xuất Q1

  • R6 là điện trở phân dòng, là điện trở công xuất lớn .

  • Q3 là đèn so sánh và khuếch đại áp dò sai

  • Khuếch đại điện áp dò sai

  • Q1 đèn công xuất nguồn

  • => Nguồn làm việc trong dải điện áp vào có thể thay đổi 10%, điện áp ra luôn luôn cố định .

Bài tập : Bạn đọc hãy phân tích nguyên
lý hoạt động của mạch nguồn trên.

Nguon: hocnghe.com.vn

Read Full Post »

1 – Mạch khuếch đại

1.1 – Khái niệm về mạch khuyếh đại .

Mạch khuyếch đại được sử dụng trong hầu hết các
thiết bị điện tử, như mạch khuyếch đại âm tần trong Cassete, Âmply,
Khuyếch đại tín hiệu video trong Ti vi mầu v.v …

Có ba loại mạch khuyếch đại chính là :

  • Khuyếch đại về điện áp : Là mạch khi ta đưa một tín hiệu có biên độ nhỏ vào, đầu ra ta sẽ thu được một tín hiệu có biên độ lớn hơn nhiều lần.
  • Mạch khuyếch đại về dòng điện :
    Là mạch khi ta đưa một tín hiệu có cường độ yếu vào, đầu ra ta sẽ thu
    được một tín hiệu cho cường độ dòng điện mạnh hơn nhiều lần.
  • Mạch khuyếch đại công xuất : Là
    mạch khi ta đưa một tín hiệu có công xuất yếu vào , đầu ra ta thu được
    tín hiệu có công xuất mạnh hơn nhiều lần, thực ra mạch khuyếch đại công
    xuất là kết hợp cả hai mạch khuyếch đại điện áp và khuyếch đại dòng
    điện làm một.

1.2 – Các chế độ hoạt động của mạch khuyếch đại.

Các chế độ hoạt động
của mạch khuyếch đại là phụ thuộc vào chế độ phân cực cho
Transistor, tuỳ theo mục đích sử dụng mà mạch khuyếch đại được phân cực
để KĐ ở chế độ A, chế độ B , chế độ AB hoặc chế độ C

a) Mạch khuyếch đại ở chế độ A.
Là các mạch khuyếch đại cần lấy ra tín hiệu hoàn toàn giốn với tín hiệu ngõ vào.

Mạch khuyếch đại chế độ A khuyếch đại
cả hai bán chu kỳ tín hiệu ngõ vào

* Để Transistor hoạt động ở chế độ A, ta phải định thiên sao cho điện áp UCE ~ 60% ÷ 70% Vcc.

* Mạch khuyếch đại ở chế độ A được sử dụng trong các mạch trung
gian như khuyếch đại cao tần, khuyếch đại trung tần, tiền khuyếch đại v
v..

b) Mach khuyếch đại ở chế độ B.

Mạch khuyếch đại chế độ B là mạch chỉ khuyếch đại một nửa chu kỳ của
tín hiệu, nếu khuyếch đại bán kỳ dương ta dùng transistor NPN, nếu
khuyếch đại bán kỳ âm ta dùng transistor PNP, mạch khuyếch đại ở chế độ
B không có định thiên.

Mạch khuyếch đại ở chế độ B chỉ khuyếch
đại một bán chu kỳ của tín hiệu ngõ vào.

* Mạch khuyếch đại chế độ B
thường được sử dụng trong các mạch khuếch đại công xuất đẩy kéo như
công xuất âm tần, công xuất mành của Ti vi, trong các mạch công xuất
đẩy kéo , người ta dùng hai đèn NPN và PNP mắc nối tiếp , mỗi đèn sẽ
khuyếch đại một bán chu kỳ của tín hiệu, hai đèn trong mạch khuyếch đại
đẩy kéo phải có các thông số kỹ thuật như nhau :

* Mạch khuyếch đại công xuất kết hợp cả hai chế độ A và B .

Mạch khuyếch đại công xuất Âmply có : Q1 khuyếch đại ở
chế độ A, Q2 và Q3 khuyếch đại ở chế độ B, Q2 khuyếch đại
cho bán chu kỳ dương, Q3 khuyếch đại cho bán chu kỳ âm.

c) Mạch khuyếch đại ở chế độ AB.
Mạch khuyếch đại ở chế độ AB là mạch tương tự khuyếch đại ở chế độ B , nhưng có định thiện sao cho điện áp UBE
sấp sỉ 0,6 V, mạch cũng chỉ khuyếch đại một nửa chu kỳ tín hiệu và khắc
phục hiện tượng méo giao điểm của mạch khuyếch đại chế độ B, mạch này
cũng được sử dụng trong các mạch công xuất đẩy kéo .

d) Mạch khuyếch đại ở chế độ C
Là mạch khuyếch đại có điện áp UBE
được phân cự ngược với mục đích chỉ lấy tín hiệu đầu ra là một phần
đỉnh của tín hiệu đầu vào, mạch này thường sử dụng trong các mạch
tách tín hiệu : Thí dụ mạch tách xung đồng bộ trong ti vi mầu.

Ứng dụng mạch khuyếch đại chế độ C trong
mạch tách xung đồng bộ Ti vi mầu.

2 – Các kiểu mắc của Transistor

2.1 – Transistor mắc theo kiểu E chung.

Mạch mắc theo kiểu E chung có cực E đấu
trực tiếp xuống mass hoặc đấu qua tụ xuống mass để thoát thành phần
xoay chiều, tín hiệu đưa vào cực B và lấy ra trên cực C, mạch có
sơ đồ như sau :

Mạch khuyếch đại điện áp mắc kiểu E chung ,
Tín hiệu đưa vào cực B và lấy ra trên cực C

Rg : là điện trở ghánh , Rđt : Là điện trở
định thiên, Rpa : Là điện trở phân áp .

Đặc điểm của mạch khuyếch đại E chung.

  • Mạch khuyếch đại E chung thường được định thiên sao cho điện áp UCE khoảng 60% ÷ 70 % Vcc.

  • Biên độ tín hiệu ra thu được lớn hơn biên độ tín hiệu vào nhiều lần, như vậy mạch khuyếch đại về điện áp.

  • Dòng điện tín hiệu ra lớn hơn dòng tín hiệu vào nhưng không đáng kể.

  • Tín hiệu đầu ra ngược pha với tín hiệu đầu vào : vì khi điện áp tín hiệu vào tăng => dòng IBE tăng => dòng ICE
    tăng => sụt áp trên Rg tăng => kết quả là điện áp chân C giảm ,
    và ngược lại khi điện áp đầu vào giảm thì điện áp chân C lại tăng
    => vì vậy điện áp đầu ra ngược pha với tín hiệu đầu vào.

  • Mạch mắc theo kiểu E chung như trên được ứng dụng nhiều nhất trong thiết bị điện tử.

2.2 – Transistor mắc theo kiểu C chung.

Mạch mắc theo kiểu C chung có chân C đấu
vào mass hoặc dương nguồn ( Lưu ý : về phương diện xoay chiều thì dương
nguồn tương đương với mass ) , Tín hiệu được đưa vào cực B và lấy ra
trên cực E , mạch có sơ đồ như sau :

Mạch mắc kiểu C chung , tín hiệu đưa
vào cực B và lấy ra trên cực E

Đặc điểm của mạch khuyếch đại C chung .

  • Tín hiệu đưa vào cực B và lấy ra trên cực E

  • Biên độ tín hiệu ra bằng biên độ tín hiệu vào : Vì mối
    BE luôn luôn có giá trị khoảng 0,6V do đó khi điện áp chân B tăng bao
    nhiêu thì áp chân C cũng tăng bấy nhiêu => vì vậy biên độ tín hiệu
    ra bằng biên độ tín hiệu vào .

  • Tín hiệu ra cùng pha với tín hiệu vào : Vì khi điện áp
    vào tăng => thì điện áp ra cũng tăng, điện áp vào giảm thì điện áp
    ra cũng giảm.

  • Cường độ của tín hiệu ra mạnh hơn cường độ của tín hiệu vào nhiều lần : Vì khi tín hiệu vào có biên độ tăng => dòng IBE sẽ tăng => dòng ICE cũng tăng gấp β lần dòng IBE
    ICE = β.IBE giả sử Transistor có hệ số khuyếch đại β = 50 lần thì khi dòng IBE tăng 1mA => dòng ICE sẽ tăng 50mA, dòng ICE chính là dòng của tín hiệu đầu ra, như vậy tín hiệu đầu ra có cường độ dòng điện mạnh hơn nhiều lần so với tín hiệu vào.

  • Mạch trên được ứng dụng nhiều trong các mạch
    khuyếch đại đêm (Damper), trước khi chia tín hiệu làm nhiều nhánh ,
    người ta thường dùng mạch Damper để khuyếch đại cho tín hiệu khoẻ hơn .
    Ngoài ra mạch còn được ứng dụng rất nhiều trong các mạch ổn áp nguồn (
    ta sẽ tìm hiểu trong phần sau )

2.3 – Transistor mắc theo kiểu B chung.

  • Mạch mắc theo kiểu B chung có tín hiệu đưa vào chân E và lấy ra trên chân C , chân B được thoát mass thông qua tụ.

  • Mach mắc kiểu B chung rất ít khi được sử dụng trong thực tế.

Mạch khuyếch đại kiểu B chung , khuyếch
đại về điện áp và không khuyếch đại về dòng điện.

3 – Các kiểu ghép tầng

3.1 – Ghép tầng qua tụ điện.
* Sơ đồ mạch ghép tầng qua tụ điện

Mạch khuyếch đại đầu từ – có hai tầng khuyếch
đại được ghép với nhau qua tụ điện.

  • Ở trên là sơ đồ mạch khuyếch đại đầu từ trong đài
    Cassette, mạch gồm hai tầng khuyếch đại mắc theo kiểu E chung, các tầng
    được ghép tín hiệu thông qua tụ điện, người ta sử dụng các tụ C1 , C3 , C5 làm
    tụ nối tầng cho tín hiệu xoay chiều đi qua và ngăn áp một chiều lại,
    các tụ C2 và C4 có tác dụng thoát thành phần xoay chiều từ chân E xuống
    mass, C6 là tụ lọc nguồn.

  • Ưu điểm của mạch là đơn giản, dễ lắp do đó mạch được sử
    dụng rất nhiều trong thiết bị điện tử, nhược điểm là không khai thác
    được hết khả năng khuyếch đại của Transistor do đó hệ số khuyếch đại
    không lớn.

  • Ở trên là mạch khuyếch đại âm tần, do đó các tụ nối tầng thường dùng tụ hoá có trị số từ 1µF ÷ 10µF.

  • Trong các mạch khuyếch đại cao tần thì tụ nối tầng có trị số nhỏ khoảng vài nanô Fara.

3.2 – Ghép tầng qua biến áp .
* Sơ đồ mạch trung tần tiếng trong Radio sử dụng biến áp ghép tầng

Tầng Trung tần tiếng của Radio sử dụng biến áp ghép tầng.

  • Ở trên là sơ đồ mạch trung tần Radio sử dụng các biến
    áp ghép tầng, tín hiệu đầu ra của tầng này được ghép qua biến áp để đi
    vào tầng phía sau.

  • Ưu điểm của mạch là phối hợp được trở kháng giữa các
    tầng do đó khai thác được tối ưu hệ số khuyếch đại , hơn nữa cuộn sơ
    cấp biến áp có thể đấu song song với tụ để cộng hưởng khi mạch khuyếch
    đại ở một tần số cố định.

  • Nhược điểm : nếu mạch hoạt động ở dải tần số rộng thì gây méo tần số, mạch chế tạo phức tạp và chiếm nhiều diện tích.

3.3 – Ghép tầng trực tiếp .

* Kiểu ghép tầng trực tiếp thường được dùng trong các mạch khuyếch đại công xuất âm tần.

Mạch khuyếch đại công xuất âm tần có đèn đảo pha Q1
được ghép trực tiếp với hai đèn công xuất Q2 và Q3.

4 – Phương pháp kiểm tra một tầng khuếch đại

4.1 – Trong các mạch khuyếch đại ( chế độ A ) thì phân cực như thế nào là đúng.

Mạch khuyếch đại được phân cực đúng.

  • Mạch khuyếch đại ( chế độ A) được phân cực đúng là mạch có
    UBE ~ 0,6V ; UCE ~ 60% ÷ 70% Vcc

  • Khi mạch được phân cực đúng ta thấy , tín hiệu ra có biên độ lớn nhất và không bị méo tín hiệu .

4.2 – Mạch khuyếch đại ( chế độ A ) bị phân cực sai.

Mạch khuyếch đại bị phân cực sai, điện áp UCE quá thấp .

Mạch khuyếch đại bị phân cực sai, điện áp UCE quá cao .

  • Khi mạch bị phân cực sai ( tức là UCE quá thấp hoặc quá cao ) ta thấy rằng tín hiệu ra bị méo dạng, hệ số khuyếch đại của mạch bị giảm mạnh.

  • Hiện tượng méo dạng trên sẽ gây hiện tượng âm thanh bị rè hay bị nghẹt ở các mạch khuyếch đại âm tần.

Phương pháp kiểm tra một tầng khuyếch đại.

  • Một tầng khuyếch đại nếu ta kiểm tra thấy UCE quá thấp so với nguồn hoặc quá cao sấp sỉ bằng nguồn => thì tầng khuyếch đại đó có vấn đề.

  • Nếu UCE quá thấp thì có thể do chập CE( hỏng Transistor) , hoặc đứt Rg.

  • Nếu UCE quá cao ~ Vcc thì có thể đứt Rđt hoặc hỏng Transistor.

  • Một tầng khuyếch đại còn tốt thông thường có :
    UBE ~ 0,6V ; UCE ~ 60% ÷ 70% Vcc

Nguồn: hocnghe.com.vn

Read Full Post »

1. Cấu tạo và nguyên lý hoạt động của Thyristor

Cấu tạo Thyristor     Ký hiệu của Thyristor     Sơ đồ
tương tương

Thyristor có cấu tạo gồm 4 lớp bán dẫn ghép lại tạo
thành hai Transistor mắc nối tiếp, một Transistor thuận và một Transistor
ngược ( như sơ đồ tương đương ở trên ) .  Thyristor có 3 cực là Anot, Katot
và Gate gọi là A-K-G,  Thyristor là Diode có điều khiển , bình thường khi
được phân cực thuận, Thyristor chưa dẫn điện, khi có một điện áp kích vào
chân G => Thyristor dẫn cho đến khi điện áp đảo chiều hoặc cắt điện áp nguồn
Thyristor mới ngưng dẫn..

Thí nghiệm sau đây minh hoạ sự hoạt động của Thyristor

Thí nghiêm minh hoạ sự hoạt động của Thyristor.

  • Ban đầu công tắc K2 đóng, Thyristor mặc dù được phân cực
    thuận nhưng vẫn không có dòng điện chạy qua, đèn không sáng.

  • Khi công tắc K1 đóng,  điện áp U1 cấp vào chân G làm đèn
    Q2 dẫn => kéo theo đèn Q1 dẫn => dòng điện từ nguồn U2 đi qua Thyristor
    làm đèn sáng.

  • Tiếp theo ta thấy công tắc K1 ngắt nhưng đèn vẫn sáng, vì
    khi Q1 dẫn, điện áp chân B đèn Q2 tăng làm Q2 dẫn, khi Q2 dẫn làm áp chân
    B đèn Q1 giảm làm đèn Q1 dẫn , như vậy hai đèn định thiên cho nhau và duy
    trì trang thái dẫn điện.

  • Đèn sáng duy trì cho đến khi K2 ngắt => Thyristor không
    được cấp điện và ngưng trang thái hoạt động.

  • Khi Thyristor đã ngưng dẫn, ta đóng K2 nhưng đèn vẫn không
    sáng như trường hợp ban đầu.

Hình dáng Thyristor

Đo kiểm tra Thyristor

Đo kiểm tra Thyristor

Đặt động hồ thang x1W , đặt
que đen vào Anot, que đỏ vào Katot ban đầu kim không lên , dùng Tovit chập
chân A vào chân G => thấy  đồng hồ lên kim , sau đó bỏ Tovit ra => đồng hồ
vẫn lên kim => như vậy là Thyristor tốt .

Ứng dụng của Thyristor

Thyristor thường  được sử dụng trong các mạch chỉnh lưu
nhân đôi tự động của nguồn xung Ti vi mầu .

Thí dụ mạch chỉnh lưu nhân 2 trong nguồn Ti vi mầu JVC
1490 có sơ đồ như sau :

Ứng dụng của Thyristor trong mạch chỉnh lưu

nhân 2 tự động của nguồn xung Tivi mầu JVC

Nguồn: hocnghe.com.vn

Read Full Post »

1. Giới thiệu về Mosfet

Mosfet là Transistor hiệu ứng trường
( Metal Oxide Semiconductor Field Effect Transistor ) là một Transistor
đặc biệt có cấu tạo và hoạt động khác với Transistor  thông thường
mà ta đã biết, Mosfet có nguyên tắc hoạt động dựa trên hiệu ứng từ
trường để tạo ra dòng điện, là linh kiện có trở kháng đầu vào lớn thích
hợn cho khuyếch đại các nguồn tín hiệu yếu, Mosfet được sử dụng nhiều
trong các mạch nguồn Monitor, nguồn máy tính .

Transistor hiệu ứng trường Mosfet

2. Cấu tạo và ký hiệu của Mosfet.

Ký hiệu và sơ đồ chân tương đương
giữa Mosfet và Transistor

* Cấu tạo của Mosfet.

Cấu tạo của Mosfet ngược Kênh N

  • G : Gate gọi là cực cổng

  • S : Source  gọi là cực nguồn

  • D : Drain gọi  là cực máng

  • Mosfet kện N có hai miếng bán dẫn loại P đặt trên nền bán dẫn N, giữa hai lớp P-N được cách điện bởi lớp SiO2
    hai miếng bán dẫn P được nối ra thành cực D và cực S, nền bán dẫn N
    được nối với lớp màng mỏng ở trên sau đó được dấu ra thành cực G.

  • Mosfet có điện trở  giữa cực G với cực S và giữa
    cực G với cực D  là vô cùng lớn , còn điện trở giữa cực D và cực S
    phụ thuộc vào  điện áp chênh lệch giữa cực G và cực S ( UGS )

  • Khi điện áp UGS = 0 thì điện trở RDS rất lớn, khi điện áp UGS > 0  => do hiệu ứng từ trường làm cho điện trở RDS giảm, điện áp UGS càng lớn thì điện trở RDS càng nhỏ.

3. Nguyên tắc hoạt động của Mosfet

Mạch điện thí nghiệm.

Mạch thí nghiệm sự hoạt động của Mosfet

  • Thí nghiệm : Cấp nguồn một chiều UD
    qua một bóng đèn D vào hai cực D và S của Mosfet Q (Phân cực thuận cho
    Mosfet ngược) ta thấy bóng đèn không sáng nghĩa là không có dòng điện
    đi qua cực DS khi chân G không được cấp điện.

  • Khi công tắc K1 đóng, nguồn UG cấp vào hai cực GS làm điện áp UGS > 0V => đèn Q1 dẫn => bóng đèn D sáng.

  • Khi công tắc K1 ngắt, điện áp tích trên tụ C1 (tụ gốm)
    vẫn duy trì cho đèn Q dẫn => chứng tỏ không có dòng điện đi qua cực
    GS.

  • Khi công tắc K2 đóng, điện áp tích trên tụ C1 giảm bằng 0 =>  UGS= 0V  => đèn tắt

  • => Từ thực nghiệm trên ta thấy rằng : điện áp đặt
    vào chân G không tạo ra dòng GS như trong Transistor thông thường mà
    điện áp này chỉ tạo ra từ trường => làm cho điện trở RDS giảm xuống .

4. Đo kiểm tra Mosfet

  • Một Mosfet còn tốt : Là khi đo trở kháng
    giữa G với S và giữa G với D có điện trở bằng vô cùng ( kim không lên
    cả hai chiều đo)  và khi G đã được thoát điện thì trở kháng giữa D
    và S phải là vô cùng.

Các bước kiểm tra như sau :

Đo kiểm tra Mosfet ngược thấy còn tốt.

  • Bước 1 : Chuẩn bị để thang x1KW

  • Bước 2 : Nạp cho G một điện tích ( để que đen vào G que đỏ vào S hoặc D )

  • Bước 3 :  Sau khi nạp cho G một điện tích  ta đo giữa D và S ( que đen vào D que đỏ vào S  ) => kim sẽ lên.

  • Bước 4 : Chập G vào D hoặc G vào S để thoát điện chân G.

  • Bước 5 : Sau khi đã thoát điện chân G đo lại DS như bước 3 kim không lên.

  • => Kết quả như vậy là Mosfet tốt.

Đo kiểm tra Mosfet ngược thấy bị chập

  • Bước 1 : Để đồng hồ thang x 1KW

  • Đo giữa G và S hoặc giữa G và D nếu kim lên = 0 W là chập

  • Đo giữa D và S mà cả hai chiều đo kim lên = 0 W là chập  D S

5. Ứng dung của Mosfet trong thực tế

Mosfet trong nguồn xung của Monitor

Mosfet được sử dụng làm đèn công xuất nguồn Monitor

Trong bộ nguồn xung của
Monitor hoặc máy vi tính, người ta thường dùng cặp linh kiện là IC tạo
dao động và đèn Mosfet, dao động tạo ra từ IC có dạng xung vuông được
đưa đến chân G của Mosfet, tại thời điểm xung có điện áp > 0V =>
đèn Mosfet dẫn, khi xung dao động = 0V Mosfet ngắt => như vậy dao
động tạo ra sẽ điều khiển cho Mosfet liên tục đóng ngắt tạo thành dòng
điện biến thiên liên tục chạy qua cuộn sơ cấp => sinh ra từ trường
biến thiên cảm ứng lên các cuộn thứ cấp => cho ta điện áp ra.

* Đo kiểm tra Mosfet trong mạch .
Khi kiểm tra Mosfet trong mạch , ta chỉ cần để thang x1W
và đo giữa D và S => Nếu 1 chiều kim lên đảo chiều đo kim không lên
=> là Mosfet bình thường, Nếu cả hai chiều kim lên = 0 W là Mosfet bị chập DS.

6. Bảng tra cứu Mosfet thông dụng

Hướng dẫn :

  • Loại kênh dẫnP-Channel : là Mosfet thuận ,   N-Channel là Mosfet ngược.
  • Đặc điểm ký thuật : Thí dụ:   3A, 25W : là dòng D-S cực đại và công xuất cực đại.
STT Ký hiệu Loại kênh dẫn Đặc điểm kỹ thuật
1 2SJ306 P-Channel 3A , 25W
2 2SJ307 P-Channel 6A, 30W
3 2SJ308 P-Channel 9A, 40W
4 2SK1038 N-Channel 5A, 50W
5 2SK1117 N-Channel 6A, 100W
6 2SK1118 N-Channel 6A, 45W
7 2SK1507 N-Channel 9A, 50W
8 2SK1531 N-Channel 15A, 150W
9 2SK1794 N-Channel 6A,100W
10 2SK2038 N-Channel 5A,125W
11 2SK2039 N-Channel 5A,150W
12 2SK2134 N-Channel 13A,70W
13 2SK2136 N-Channel 20A,75W
14 2SK2141 N-Channel 6A,35W
15 2SK2161 N-Channel 9A,25W
16 2SK2333 N-FET 6A,50W
17 2SK400 N-Channel 8A,100W
18 2SK525 N-Channel 10A,40W
19 2SK526 N-Channel 10A,40W
20 2SK527 N-Channel 10A,40W
21 2SK555 N-Channel 7A,60W
22 2SK556 N-Channel 12A,100W
23 2SK557 N-Channel 12A,100W
24 2SK727 N-Channel 5A,125W
25 2SK791 N-Channel 3A,100W
26 2SK792 N-Channel 3A,100W
27 2SK793 N-Channel 5A,150W
28 2SK794 N-Channel 5A,150W
29 BUZ90 N-Channel 5A,70W
30 BUZ90A N-Channel 4A,70W
31 BUZ91 N-Channel 8A,150W
32 BUZ 91A N-Channel 8A,150W
33 BUZ 92 N-Channel 3A,80W
34 BUZ 93 N-Channel 3A,80W
35 BUZ 94 N-Channel 8A,125W
36 IRF 510 N-Channel 5A,43W
37 IRF 520 N-Channel 9A,60W
38 IRF 530 N-Channel 14A,88W
39 IRF 540 N-Channel 28A,150W
40 IRF 610 N-Channel 3A,26W
41 IRF 620 N-Channel 5A,50W
42 IRF 630 N-Channel 9A,74W
43 IRF 634 N-Channel 8A,74W
44 IRF 640 N-Channel 18A,125W
45 IRF 710 N-Channel 2A,36W
46 IRF 720 N-Channel 3A,50W
47 IRF 730 N-Channel 5A,74W
48 IRF 740 N-Channel 10A,125W
49 IRF 820 N-Channel 2A,50W
50 IRF 830 N-Channel 4A,74W
51 IRF 840 N-Channel 8A,125W
52 IRF 841 N-Channel 8A,125W
53 IRF 842 N-Channel 7A,125W
54 IRF 843 N-Channel 7A,125W
55 IRF 9610 P-Channel 2A,20W
56 IRF 9620 P-Channel 3A,40W
57 IRF 9630 P-Channel 6A,74W
58 IRF 9640 P-Channel 11A,125W
59 IRFI 510G N-Channel 4A,27W
60 IRFI 520G N-Channel 7A,37W
61 IRFI 530G N-Channel 10A,42W
62 IRFI 540G N-Channel 17A,48W
63 IRFI 620G N-Channel 4A,30W
64 IRFI 630G N-Channel 6A,35W
65 IRFI 634G N-Channel 6A,35W
66 IRFI 640G N-Channel 10A,40W
67 IRFI 720G N-Channel 3A,30W
68 IRFI 730G N-Channel 4A,35W
69 IRFI 740G N-Channel 5A,40W
70 IRFI 820G N-Channel 2A,30W
71 IRFI 830G N-Channel 3A,35W
72 IRFI 840G N-Channel 4A,40W
73 IRFI 9620G P-Channel 2A,30W
74 IRFI 9630G P-Channel 4A,30W
75 IRFI 9640G P-Channel 6A,40W
76 IRFS 520 N-Channel 7A,30W
77 IRFS 530 N-Channel 9A,35W
78 IRFS 540 N-Channel 15A,40W
79 IRFS 620 N-Channel 4A,30W
80 IRFS 630 N-Channel 6A,35W
81 IRFS 634 N-Channel 5A,35W
82 IRFS 640 N-Channel 10A,40W
83 IRFS 720 N-Channel 2A,30W
84 IRFS 730 N-Channel 3A,35W
85 IRFS 740 N-Channel 3A,40W
86 IRFS 820 N-Channel 2A-30W
87 IRFS 830 N-Channel 3A-35W
88 IRFS 840 N-Channel 4A-40W
89 IRFS 9620 P-Channel 3A-30W
90 IRFS 9630 P-Channel 4A-35W
91 IRFS 9640 P-Channel 6A-40W
92 J177(2SJ177) P-Channel 0.5A-30W
93 J109(2SJ109) P-Channel 20mA,0.2W
94 J113(2SK113) P-Channel 10A-100W
95 J114(2SJ114) P-Channel 8A-100W
96 J118(2SJ118) P-Channel 8A
97 J162(2SJ162) P-Channel 7A-100W
98 J339(2SJ339) P-Channel 25A-40W
99 K30A/2SK304/ 2SK30R N-Channel 10mA,1W
100 K214/2SK214 N-Channel 0.5A,1W
101 K389/2SK389 N-Channel 20mA,1W
102 K399/2SK399 N-Channel 10-100
103 K413/2SK413 N-Channel 8A
104 K1058/2SK1058 N-Channel
105 K2221/2SK2221 N-Channel 8A-100W
106 MTP6N10 N-Channel 6A-50W
107 MTP6N55 N-Channel 6A-125W
108 MTP6N60 N-Channel 6A-125W
109 MTP7N20 N-Channel 7A-75W
110 MTP8N10 N-Channel 8A-75W
111 MTP8N12 N-Channel 8A-75W
112 MTP8N13 N-Channel 8A-75W
113 MTP8N14 N-Channel 8A-75W
114 MTP8N15 N-Channel 8A-75W
115 MTP8N18 N-Channel 8A-75W
116 MTP8N19 N-Channel 8A-75W
117 MTP8N20 N-Channel 8A-75W
118 MTP8N45 N-Channel 8A-125W
119 MTP8N46 N-Channel 8A-125W
120 MTP8N47 N-Channel 8A-125W
121 MTP8N48 N-Channel 8A-125W
122 MTP8N49 N-Channel 8A-125W
123 MTP8N50 N-Channel 8A-125W
124 MTP8N80 N-Channel 8A-75W

Nguồn: hocnghe.com.vn

Read Full Post »

1 – Chất bán dẫn

1.1 –  Chất bán dẫn là gì ?
Chất
bán dẫn là nguyên liệu để sản xuất ra các loại linh kiện bán dẫn như
Diode, Transistor, IC mà ta đã thấy trong các thiết bị điện tử ngày
nay.

Chất bán dẫn là những chất có đặc điểm trung gian giữa
chất dẫn điện và chất cách điện, về phương diện hoá học thì bán dẫn là
những chất có 4 điện tử ở lớp ngoài cùng của nguyên tử. đó là các chất
Germanium ( Ge) và Silicium (Si)

Từ các chất bán dẫn ban đầu ( tinh khiết) người ta phải
tạo ra hai loại bán dẫn là bán dẫn loại N và bán dẫn loại P, sau đó
ghép các miếng bán dẫn loại N và P lại ta thu được Diode hay Transistor.

Si và Ge đều có hoá trị 4, tức là lớp ngoài cùng có 4
điện tử, ở thể tinh khiết các nguyên tử Si (Ge) liên kết với nhau theo
liên kết cộng hoá trị  như hình dưới.

Chất bán dẫn tinh khiết .

1.2 –  Chất bán dẫn loại N

* Khi ta pha một lượng nhỏ chất có hoá trị 5 như Phospho (P) vào chất
bán dẫn Si thì một nguyên tử P liên kết với 4 nguyên tử Si theo liên
kết cộng hoá trị, nguyên tử Phospho chỉ có 4 điện tử tham gia liên kết
và còn dư một điện tử và trở thành điện tử tự do => Chất bán dẫn lúc
này trở thành thừa điện tử ( mang điện âm) và được gọi là bán dẫn N (
Negative : âm ).

Chất bán dẫn N

1.3 –  Chất bán dẫn loại P

Ngược lại khi ta pha thêm một lượng nhỏ chất có hoá trị 3 như Indium
(In) vào chất bán dẫn Si  thì 1  nguyên tử Indium sẽ liên kết
với 4 nguyên tử Si theo liên kết cộng hoá trị và liên kết bị thiếu một
điện tử  => trở thành lỗ trống ( mang điện dương)  và được
gọi là chất bán dẫn P.

Chất bán dẫn P

2 – Diode (Đi ốt) Bán dẫn

2.1 – Tiếp giáp P – N và Cấu tạo của Diode bán dẫn.
Khi
đã có được hai chất bán dẫn là P và N , nếu ghép hai chất bán dẫn theo
một tiếp giáp P – N ta được một Diode, tiếp giáp P -N  có đặc điểm
: Tại bề mặt tiếp xúc, các điện tử dư thừa trong bán dẫn N khuyếch tán
sang vùng bán dẫn P để lấp vào các lỗ trống => tạo thành một lớp Ion
trung hoà về điện =>  lớp Ion này tạo thành miền cách điện giữa
hai chất bán dẫn.

Mối tiếp xúc P – N  => Cấu tạo của Diode .

* Ở hình trên là mối tiếp xúc P – N và cũng chính là cấu tạo của Diode bán dẫn.

Ký hiệu và hình dáng của Diode bán dẫn.

2.2 –  Phân cực thuận cho Diode.
Khi
ta cấp điện áp dương (+) vào Anôt ( vùng bán dẫn P ) và điện áp âm (-)
vào Katôt ( vùng bán dẫn N ) , khi đó dưới tác dụng tương tác của điện
áp, miền cách điện thu hẹp lại, khi điện áp chênh lệch giữ hai cực đạt
0,6V ( với Diode loại Si ) hoặc 0,2V ( với Diode loại Ge ) thì diện
tích miền cách điện giảm bằng không => Diode bắt đầu dẫn điện. Nếu
tiếp tục tăng điện áp nguồn thì dòng qua Diode tăng nhanh nhưng chênh
lệch điện áp giữa hai cực của Diode không tăng (vẫn giữ ở mức 0,6V )

Diode (Si)  phân cực thuận – Khi Dode dẫn
điện áp thuận đựơc gim ở mức 0,6V

Đường đặc tuyến của điện áp thuận qua Diode

* Kết luận : Khi Diode (loại Si)
được phân cực thuận, nếu điện áp phân cực thuận < 0,6V thì chưa có
dòng đi qua Diode, Nếu áp phân cực thuận đạt = 0,6V thì có dòng đi qua
Diode sau đó dòng điện qua Diode tăng nhanh nhưng sụt áp thuận vẫn giữ
ở giá trị 0,6V .

2.3 – Phân cực ngược cho Diode.

Khi phân cực ngược cho Diode tức là cấp nguồn (+)  vào Katôt (bán
dẫn N), nguồn (-) vào Anôt (bán dẫn P), dưới sự tương tác của điện áp
ngược,  miền cách điện càng rộng ra và ngăn cản dòng điện đi qua
mối tiếp giáp,  Diode có thể chiu được điện áp ngược rất lớn
khoảng 1000V thì diode mới bị đánh thủng.

Diode chỉ bị cháy khi áp phân cực ngựơc tăng > = 1000V

2.4 – Phương pháp đo kiểm tra Diode

Đo kiểm tra Diode

  • Đặt đồng hồ ở thang x 1Ω , đặt hai que đo vào hai đầu Diode, nếu :

  • Đo chiều thuận que đen  vào Anôt, que đỏ vào Katôt => kim lên, đảo chiều đo kim không lên là => Diode tốt

  • Nếu đo cả hai chiều kim lên = 0Ω  => là Diode bị chập.

  • Nếu đo thuận chiều mà kim không lên => là Diode bị đứt.

  • Ở phép đo trên thì Diode  D1 tốt , Diode D2 bị chập và D3 bị đứt

  • Nếu để thang 1KΩ mà đo ngược vào Diode kim vẫn lên một chút là Diode bị dò.

2.5 – Ứng dụng của Diode bán dẫn .

* Do tính chất dẫn điện một chiều nên Diode
thường được sử dụng trong các mạch chỉnh lưu nguồn xoay chiều thành một
chiều, các mạch tách sóng, mạch gim áp phân cực cho transistor hoạt
động . trong mạch chỉnh lưu Diode có thể được tích hợp thành Diode cầu
có dạng .

Diode cầu trong mạch chỉnh lưu điện xoay chiều .

3 – Các loại Diode

3.1 –  Diode Zener
* Cấu tạo :
Diode Zener có cấu tạo tương tự Diode thường nhưng có hai lớp bán dẫn P
– N ghép với nhau, Diode Zener được ứng dụng trong chế độ phân cực
ngược, khi phân cực thuận Diode zener như diode thường nhưng khi phân
cực ngược Diode zener sẽ gim lại một mức điện áp cố định bằng giá trị
ghi trên diode.

Hình dáng Diode Zener  ( Dz  )

Ký hiệu và ứng dụng của Diode zener trong mạch.

  • Sơ đồ trên minh hoạ ứng dụng của Dz, nguồn U1 là nguồn có điện áp thay đổi, Dz là diode ổn áp, R1 là trở hạn dòng.

  • Ta thấy rằng khi nguồn U1 > Dz thì áp trên Dz luôn luôn cố định cho dù nguồn U1 thay đổi.

  • Khi nguồn U1 thay đổi thì dòng ngược qua Dz thay đổi, dòng ngược qua Dz có giá trị giới hạn khoảng 30mA.

  • Thông thường người ta sử dụng nguồn U1 > 1,5 => 2
    lần Dz và lắp trở hạn dòng R1 sao cho dòng ngược lớn nhất qua Dz
    < 30mA.

Nếu U1 < Dz thì khi U1 thay đổi áp trên Dz cũng thay đổi
Nếu  U1 > Dz thì khi U1 thay đổi => áp trên Dz không đổi.

3.2 –  Diode Thu quang. ( Photo Diode )
Diode
thu quang hoạt động ở chế độ phân cực nghịch, vỏ diode có một miếng
thuỷ tinh để ánh sáng chiếu vào mối P – N , dòng điện ngược qua diode
tỷ lệ thuận với cường độ ánh sáng chiếu vào diode.

Ký hiệu của Photo Diode

Minh hoạ sự hoạt động của Photo Diode

3.3 –  Diode Phát quang ( Light Emiting Diode : LED )
Diode
phát phang là Diode phát ra ánh sáng khi được phân cực thuận, điện áp
làm việc của LED khoảng 1,7 => 2,2V dòng qua Led khoảng từ 5mA đến
20mA

Led được sử dụng để làm đèn báo nguồn, đèn nháy trang trí, báo trạng thái có điện . vv…

Diode phát quang  LED

3.4 – Diode Varicap ( Diode biến dung )
Diode biến dung là Diode có điện dung như tụ điện, và điện dung biến đổi khi ta thay đổi điện áp ngược đặt vào Diode.

Ứn dụng của Diode biến dung Varicap ( VD )
trong mạch cộng hưởng

  • Ở hình trên  khi ta chỉnh triết áp VR, điện áp
    ngược đặt vào Diode Varicap thay đổi , điện dung của diode thay đổi
    => làm thay đổi tần số công hưởng của mạch.

  • Diode biến dung được sử dụng trong các bộ kênh Ti vi mầu, trong các mạch điều chỉnh tần số cộng hưởng bằng điện áp.

3.5 –  Diode xung
Trong
các bộ nguồn xung thì ở đầu ra của biến áp xung , ta phải dùng Diode
xung để chỉnh lưu. diode xung là diode làm việc ở tần số cao khoảng vài
chục KHz , diode nắn điện thông thường không thể thay thế vào vị trí
diode xung được, nhưng ngựơc lại diode xung có thể thay thế cho vị trí
diode thường, diode xung có giá thành cao hơn diode thường nhiều lần.

Về đặc điểm , hình dáng thì Diode xung không có gì khác biệt với Diode
thường,  tuy nhiên Diode xung thường có vòng dánh dấu đứt nét hoặc
đánh dấu bằng hai vòng

Ký hiệu của Diode xung

3.6  – Diode tách sóng.

Là loại Diode nhỏ vở bằng thuỷ tinh và còn gọi là diode tiếp điểm vì
mặt tiếp xúc giữa hai chất bán dẫn P – N tại một điểm để tránh điện
dung ký sinh, diode tách sóng thường dùng trong các mạch cao tần dùng
để tách sóng tín hiệu.

3.7 – Diode nắn điện.

Là Diode tiếp mặt dùng để nắn điện trong các bộ chỉnh lưu nguồn AC 50Hz
, Diode này thường có 3 loại là 1A, 2A và 5A.

Diode nắn điện 5A

Nguồn: hocnghe.com.vn

Read Full Post »

1 – Cuộn cảm

1.1 –  Cấu tạo của cuộn cảm.
Cuộn
cảm gồm một số vòng dây quấn lại thành nhiều vòng, dây quấn được sơn
emay cách điện, lõi cuộn dây có thể là không khí, hoặc là vật liệu dẫn
từ như Ferrite hay lõi thép kỹ thuật .

Cuộn
dây lõi không
khí
Cuộn dây lõi Ferit

Ký hiệu cuộn dây trên sơ đồ :   L1 là cuộn dây lõi
không khí, L2 là cuộn dây lõi ferit, L3 là cuộn
dây có lõi chỉnh, L4 là cuộn dây lõi thép kỹ thuật

1.2 –  Các đại lượng đặc trưng của cuộn cảm.

a) Hệ số tự cảm ( định luật Faraday)
Hệ số tự cảm là đại lượng đặc trưng cho sức điện động cảm ứng của cuộn dây khi có dòng điện biến thiên chạy qua.

L = ( µr.4.3,14.n2.S.10-7 ) / l

  • L : là hệ số tự cảm của cuôn dây, đơn vị là Henrry (H)

  • n : là số vòng dây của cuộn dây.

  • l : là chiều dài của cuộn dây tính bằng mét (m)

  • S : là tiết diện của lõi, tính bằng m2

  • µr : là hệ số từ thẩm của vật liệu làm lõi .

b) Cảm kháng
Cảm kháng của cuộn dây là đại lượng đặc trưng cho sự cản trở dòng điện của cuộn dây đối với dòng điện xoay chiều .

ZL = 2.3,14.f.L

  • Trong đó :  ZL là cảm kháng, đơn vị là Ω

  • f : là tần số đơn vị là Hz

  • L : là hệ số tự cảm , đơn vị là Henry

Thí nghiệm về cảm kháng của cuộn
dây với dòng điện xoay chiều

* Thí nghiệm trên minh hoạ
: Cuộn dây nối tiếp với bóng đèn sau đó được đấu vào các nguồn điện 12V
nhưng có tần số khác nhau thông qua các công tắc K1, K2 , K3 , khi K1
đóng dòng điện một chiều đi qua cuộn dây mạnh nhất ( Vì  ZL = 0 ) => do đó bóng đèn sáng nhất, khi K2 đóng dòng điện xoay chỉều 50Hz đi qua cuộn dây yếy hơn ( do ZL tăng ) => bóng đèn sáng yếu đi, khi K3 đóng , dòng điện xoay chiều 200Hz đi qua cuộn dây yếu nhất ( do ZL tăng cao nhất) => bóng đèn sáng yếu nhất.

=> Kết luận : Cảm kháng
của cuộn dây tỷ lệ với hệ số tự cảm của cuộn dây và tỷ lệ với tần số
dòng điện xoay chiều, nghĩa là dòng điện xoay chiều có tần số càng cao
thì đi qua cuộn dây càng khó, dòng điện một chiều có tần số f = 0 Hz vì
vậy với dòng một chiều cuộn dây có cảm kháng ZL = 0

c) Điện trở thuần của cuộn dây.

Điện trở thuần của cuộn dây là điện trở mà ta có thể đo được bằng đồng
hồ vạn năng, thông thường cuộn dây có phẩm chất tốt thì điện trở thuần
phải tương đối nhỏ so với cảm kháng, điện trở thuần còn gọi là điện trở
tổn hao vì chính điện trở này sinh ra nhiệt khi cuộn dây hoạt động.

1.3 –  Tính chất nạp , xả của cuộn cảm
* Cuộn dây nạp năng lương : Khi cho một dòng điện chạy qua cuộn dây, cuộn dây nạp một năng lượng dưới dạng từ trường được tính theo công thức

W = L.I 2 / 2

  • W : năng lượng ( June )

  • L : Hệ số tự cảm ( H )

  • I dòng điện.

Thí nghiệm về tính nạp xả của cuộn dây.

Ở thí nghiệm trên : Khi K1
đóng, dòng điện qua cuộn dây tăng dần ( do cuộn dây sinh ra cảm kháng
chống lại dòng điện tăng đột ngột ) vì vậy  bóng đèn sáng từ từ,
khi K1 vừa ngắt và K2 đóng , năng lương nạp trong cuộn dây tạo thành
điện áp cảm ứng phóng ngược lại qua bóng đèn làm bóng đèn loé sáng
=> đó là hiên tượng cuộn dây xả điện.

2 – Loa và Micro

2.1 –  Loa  ( Speaker )

Loa là một ứng dụng của cuộn dây và từ trường.

Loa 4 – 20W  ( Speaker )

Cấu tạo và hoạt động của Loa ( Speaker )

Cấu tạo của loa :

Loa gồm một nam châm hình trụ có hai cực lồng vào nhau , cực N ở giữa
và cực S ở xung quanh, giữa hai cực tạo thành một khe từ có từ trường
khá mạnh, một cuôn dây được gắn với màng loa và được đặt trong khe từ,
màng loa được đỡ bằng gân cao su mềm giúp cho màng loa có thể dễ dàng
dao động ra vào.

Hoạt động :
Khi ta cho dòng điện âm tần ( điện xoay chiều từ 20 Hz => 20.000Hz )
chạy qua cuộn dây, cuộn dây tạo ra từ trường biến thiên và bị từ trường
cố định của nam châm đẩy ra, đẩy  vào làm cuộn dây dao động =>
màng loa dao động theo và phát ra âm thanh.

Chú ý : Tuyệt
đối ta không được đưa dòng điện một chiều vào loa , vì dòng điện một
chiều chỉ tạo ra từ trường cố định và cuộn dây của loa chỉ lệch về một
hướng rồi dừng lại, khi đó dòng một chiều qua cuộn dây tăng mạnh ( do
không có điện áp cảm ứng theo chiều ngược lai ) vì vậy cuộn dây sẽ bị
cháy .

2.2 – Micro

Micro

Thực chất cấu tạo Micro là một chiếc loa thu
nhỏ, về cấu tạo Micro giống loa nhưng Micro có số vòng quấn trên cuộn
dây lớn hơn loa rất nhiều vì vậy trở kháng của cuộn dây micro là rất
lớn khoảng 600Ω ( trở kháng loa từ 4Ω – 16Ω ) ngoài ra màng micro cũng
được cấu tạo rất mỏng để dễ dàng dao động khi có âm thanh tác động vào.
Loa là thiết bị để chuyển dòng điện thành âm thanh còn micro thì ngược
lại , Micro đổi âm thanh thành dòng điện âm tần.

2.3 – Rơ le  ( Relay)

Rơ le

Rơ le cũng là một ứng dụng của cuộn
dây trong sản xuất thiết bị điện tử, nguyên lý hoạt động của Rơle là
biến đổi dòng điện thành từ trường thông qua quộn dây, từ trường lại
tạo thành lực cơ học thông qua lực hút để thực hiện một động tác về cơ
khí như đóng mở công tắc, đóng mở các hành trình của một thiết bị tự
động vv…

Cấu tạo và nguyên lý hoạt động của Rơ le

3 – Biến áp

3.1 – Cấu tạo của biến áp.

Biến áp là thiết bị để biến đổi điện áp xoay chiều, cấu
tạo bao gồm một cuộn sơ cấp ( đưa điện áp vào ) và một hay nhiều cuộn
thứ cấp ( lấy điện áp ra sử dụng) cùng quấn trên một lõi từ có thể là
lá thép hoặc lõi  ferit .

Ký hiệu của biến áp

3.2 –  Tỷ số vòng / vol của bién áp .

  • Gọi  n1 và n2 là số vòng của quộn sơ cấp và thứ cấp.

  • U1 và I1 là điện áp và dòng điện đi vào cuộn sơ cấp

  • U2 và I2 là điện áp và dòng điện đi ra từ cuộn thứ cấp.

Ta có các hệ thức như sau :

U1 / U2 = n1 / n2 Điện áp ở trên hai cuộn dây sơ cấp và thứ cấp tỷ lệ thuận với số vòng dây quấn.

U1 / U2 = I2 / I1
Dòng điện ở trên hai đầu cuộn dây tỷ lệ nghịch với điện áp, nghĩa là
nếu ta lấy ra điện áp càng cao thì cho dòng càng nhỏ.

3. 3 – Công xuất của biến áp .

Công xuất của biến áp phụ thuộc tiết diện của
lõi từ, và phụ thuộc vào tần số của dòng điện xoay chiều, biến áp hoạt
động ở tần số càng cao thì cho công xuất càng lớn.

3.4 – Phân loại biến áp .

* Biến áp nguồn và biến áp âm tần:


Biến áp
nguồn
Biến áp nguồn hình xuyến

Biến áp nguồn thường gặp trong
Cassete, Âmply .. , biến áp này hoạt động ở tần số điện lưới 50Hz , lõi
biến áp sử dụng các lá  Tônsilic hình chữ E và I ghép lại, biến áp
này có tỷ số vòng / vol lớn.

Biến áp âm tần sử dụng làm
biến áp đảo pha và biến áp ra loa trong các mạch khuyếch đại công xuất
âm tần,biến áp cũng sử dụng lá Tônsilic làm lõi từ như biến áp nguồn,
nhưng lá tônsilic trong biến áp âm tần mỏng hơn để tránh tổn hao, biến
áp âm tần hoạt động ở tần số cao hơn , vì vậy có số vòng vol thấp hơn,
khi thiết kế biến áp âm tần người ta thường lấy giá trị tần số trung
bình khoảng 1KHz – đến 3KHz.

* Biến áp xung  & Cao áp .

Biến áp
xung
Cao áp

Biến áp xung là biến áp hoạt động ở tần số cao
khoảng vài chục KHz như biến áp trong các bộ nguồn xung , biến áp cao
áp . lõi biến áp xung làm bằng ferit , do hoạt động ở tần số cao nên
biến áp xung cho công xuất rất mạnh, so với biến áp nguồn thông thường
có cùng trọng lượng thì biến áp xung có thể cho công xuất mạnh gấp hàng
chục lần.

Nguồn: hocnghe.com.vn

Read Full Post »

Older Posts »